Answer:
m = 2
Step-by-step explanation:
[tex] { \bigg( \frac{1}{4} \bigg)}^{2m} \times { \bigg( \frac{1}{4} \bigg)}^{m} = { \bigg( \frac{1}{4} \bigg)}^{6} \\ \\ { \bigg( \frac{1}{4} \bigg)}^{2m + m} = { \bigg( \frac{1}{4} \bigg)}^{6} \\ \\ { \bigg( \frac{1}{4} \bigg)}^{3m} = { \bigg( \frac{1}{4} \bigg)}^{6} \\ \\ \because \: bases \: are \: equal \\ \therefore \: exponents \: will \: also \: be \: equal \\ \\ \implies3m = 6 \\ \\ \implies \: m = \frac{6}{3} \\ \\ \huge \red{ \boxed{\implies \: m = 2 }}\\ [/tex]