Respuesta :

Answer:

[tex]\displaystyle y = x^{-\frac{2}{3}}[/tex]

Step-by-step explanation:

Logarithms

Some properties of logarithms will be useful to solve this problem:

1. [tex]\log(pq)=\log p+\log q[/tex]

2. [tex]\displaystyle \log_pq=\frac{1}{\log_qp}[/tex]

3. [tex]\displaystyle \log p^q=q\log p[/tex]

We are given the equation:

[tex]\displaystyle \log_{2}(x) = \frac{3}{ \log_{xy}(2) }[/tex]

Applying the second property:

[tex]\displaystyle \log_{xy}(2)=\frac{1}{ \log_{2}(xy)}[/tex]

Substituting:

[tex]\displaystyle \log_{2}(x) = 3\log_{2}(xy)[/tex]

Applying the first property:

[tex]\displaystyle \log_{2}(x) = 3(\log_{2}(x)+\log_{2}(y))[/tex]

Operating:

[tex]\displaystyle \log_{2}(x) = 3\log_{2}(x)+3\log_{2}(y)[/tex]

Rearranging:

[tex]\displaystyle \log_{2}(x) - 3\log_{2}(x)=3\log_{2}(y)[/tex]

Simplifying:

[tex]\displaystyle -2\log_{2}(x) =3\log_{2}(y)[/tex]

Dividing by 3:

[tex]\displaystyle \log_{2}(y)=\frac{-2\log_{2}(x)}{3}[/tex]

Applying the third property:

[tex]\displaystyle \log_{2}(y)=\log_{2}\left(x^{-\frac{2}{3}}\right)[/tex]

Applying inverse logs:

[tex]\boxed{y = x^{-\frac{2}{3}}}[/tex]