Answer:
[tex]\displaystyle y = x^{-\frac{2}{3}}[/tex]
Step-by-step explanation:
Logarithms
Some properties of logarithms will be useful to solve this problem:
1. [tex]\log(pq)=\log p+\log q[/tex]
2. [tex]\displaystyle \log_pq=\frac{1}{\log_qp}[/tex]
3. [tex]\displaystyle \log p^q=q\log p[/tex]
We are given the equation:
[tex]\displaystyle \log_{2}(x) = \frac{3}{ \log_{xy}(2) }[/tex]
Applying the second property:
[tex]\displaystyle \log_{xy}(2)=\frac{1}{ \log_{2}(xy)}[/tex]
Substituting:
[tex]\displaystyle \log_{2}(x) = 3\log_{2}(xy)[/tex]
Applying the first property:
[tex]\displaystyle \log_{2}(x) = 3(\log_{2}(x)+\log_{2}(y))[/tex]
Operating:
[tex]\displaystyle \log_{2}(x) = 3\log_{2}(x)+3\log_{2}(y)[/tex]
Rearranging:
[tex]\displaystyle \log_{2}(x) - 3\log_{2}(x)=3\log_{2}(y)[/tex]
Simplifying:
[tex]\displaystyle -2\log_{2}(x) =3\log_{2}(y)[/tex]
Dividing by 3:
[tex]\displaystyle \log_{2}(y)=\frac{-2\log_{2}(x)}{3}[/tex]
Applying the third property:
[tex]\displaystyle \log_{2}(y)=\log_{2}\left(x^{-\frac{2}{3}}\right)[/tex]
Applying inverse logs:
[tex]\boxed{y = x^{-\frac{2}{3}}}[/tex]