Respuesta :

Given:

In a right angle triangle,

Perpendicular =  8 units

Base = x units

Hypotenuse = 17 units

To find:

The exact value of x.

Solution:

The given triangles is a right angle triangle. So, side lengths form a Pythagorean triplet.

[tex](Hypotenuse)^2=(Base)^2+(Perpendicular)^2[/tex]

[tex](17)^2=(x)^2+(8)^2[/tex]

[tex]289=x^2+64[/tex]

[tex]289-64=x^2[/tex]

[tex]225=x^2[/tex]

Taking square root on both sides.

[tex]\pm \sqrt{225}=x[/tex]

[tex]\pm 15=x[/tex]

Side cannot be negative. So, [tex]x=15[/tex].

Therefore, the required value is [tex]x=15[/tex] and yes, the side lengths form a Pythagorean triplet, i.e., (8,15,17).