contestada

In March 1999 the Mars Global Surveyor (GS) entered its final orbit about Mars, sending data back to Earth. Assume a circular orbit with a period of 7.08 × 103 s and orbital speed of 3.40 × 103 m/s . The mass of the GS is 930 kg and the radius of Mars is 3.43 × 106 m. Calculate the mass of Mars.

Respuesta :

Answer: [tex]5.944\times 10^{23}\ kg[/tex]

Explanation:

Given

Time period [tex]T=7.08\times 10^3\ s[/tex]

Orbital speed [tex]v=3.40\times 10^3\ m/s[/tex]

mass of GS [tex]m_{GS}=930\ kg[/tex]

Radius of Mars [tex]r=3.43\times 10^6\ m[/tex]

Consider the mass of mars is M

Here, Gravitational pull will provide the centripetal force

[tex]F_G=F_c[/tex]

[tex]\dfrac{GMm_{GS}}{r^2}=\dfrac{m_{GS}v^2}{r}\\M=\dfrac{v^2\cdot r}{G}\\M=\dfrac{(3.43\times 10^3)^2\cdot 3.43\times 10^6}{6.67\times 10^{-11}}[/tex]

[tex]M=5.944\times 10^{23}\ kg[/tex]