Answer: [tex]5.944\times 10^{23}\ kg[/tex]
Explanation:
Given
Time period [tex]T=7.08\times 10^3\ s[/tex]
Orbital speed [tex]v=3.40\times 10^3\ m/s[/tex]
mass of GS [tex]m_{GS}=930\ kg[/tex]
Radius of Mars [tex]r=3.43\times 10^6\ m[/tex]
Consider the mass of mars is M
Here, Gravitational pull will provide the centripetal force
[tex]F_G=F_c[/tex]
[tex]\dfrac{GMm_{GS}}{r^2}=\dfrac{m_{GS}v^2}{r}\\M=\dfrac{v^2\cdot r}{G}\\M=\dfrac{(3.43\times 10^3)^2\cdot 3.43\times 10^6}{6.67\times 10^{-11}}[/tex]
[tex]M=5.944\times 10^{23}\ kg[/tex]