Answer:
Gravitational potential energy: [tex]GPE_{B}>GPE_{A}>GPE_{C}[/tex]
Kinetic energy: [tex]KE_{B}<KE_{A}<KE_{C}[/tex]
Total mechanical energy: [tex]ME_{A}=ME_{B}=ME_{C}[/tex]
Explanation:
The gravitational potential energy is directly proportional to height ([tex]GPE_{B}>GPE_{A}>GPE_{C}[/tex]). Since there are no non-conservative forces, the total mechanical energy is conserved ([tex]ME_{A}=ME_{B}=ME_{C}[/tex]) and the total mechanical energy is the sum of gravitational potential and kinetic energies. Then:
[tex]GPE_{A} + KE_{A} = GPE_{B} + KE_{B} = GPE_{C} + KE_{C}[/tex] (1)
If we know that [tex]GPE_{B}>GPE_{A}>GPE_{C}[/tex], then we conclude the following inequation for the kinetic energy:
[tex]KE_{B}<KE_{A}<KE_{C}[/tex] (2)