Find the restrictions on the variable.

Answer:
[tex]\frac{x-5}{x+1}[/tex], [tex]x\neq -1, x\neq -9[/tex]
Step-by-step explanation:
x^2 + 4x - 45
= (x+9)(x-5)
x^2 + 10x + 9
= (x+9)(x+1)
So the fraction goes to
[tex]\frac{(x+9)(x-5)}{(x+9)(x+1)}[/tex] which is [tex]\frac{x-5}{x+1}[/tex].
Since the denominator cannot be 0, x^2 + 10x + 9 cannot be equal to 0. Therefore x cannot be -1 or -9.