Respuesta :

Answer:

[tex]\frac{x-4}{5x}[/tex]

Step-by-step explanation:

The equation;

[tex]\frac{x^{2} - 8x + 16}{5x}[/tex] ÷ x - 4

Factor;

[tex]\frac{(x-4)^{2}}{5x}[/tex] ÷ ( x - 4 )

Rewrite in fraction form, so that one can perform division

[tex]\frac{(x-4)^2}{5x} * \frac{1}{x-4}[/tex]

Simplify, cancel out like terms on opposite sides of the fraction bar

[tex]\frac{x-4}{5x}[/tex]