Respuesta :
Answer:
[tex]x=-2, \:1+\sqrt{3}i,\: 1-\sqrt{3} i[/tex]
Step-by-step explanation:
[tex]x^3+8=0,\\x^3=-8,\\\mathrm{For\:}x\in \mathrm{R}, x=-2[/tex]
Real solutions ([tex]x \in \mathrm{R}[/tex]): [tex]x=-2[/tex]
However, recall that [tex](\frac{-1\pm\sqrt{3}i}{2})^3=1[/tex].
Therefore:
[tex]\frac{-1\pm\sqrt{3}i}{2}\cdot -2=-2[/tex].
Thus, for [tex]x^3=-8,\: x\notin \mathrm{R}[/tex]:
[tex]x=1\pm\sqrt{3}i[/tex].
Therefore, the real and nonreal solutions of [tex]x^3+8=0[/tex] are [tex]\fbox{$-2, \:1+\sqrt{3}i,\: 1-\sqrt{3}i$}[/tex].
Answer:
-2, 1 +/- i*sqrt(3)
(3 solutions)
Step-by-step explanation:
Because the left side is in the form a^3+b^3, we can factor it as (a+b)(a^2-ab+b^2) (good formula to remember)
So we have
(x+2)(x^2-2x+4)
We can see one value already
x+2 = 0
x = -2
now we solve for
x^2-2x+4 = 0
We can use the quadratic formula, and see that the determinant is negative (2^2-4*1*4 < 0)
Therefore we have two imaginary solutions
(-(-2) +/- sqrt(2^2-4*1*4))/)2*1) = (2 +/- sqrt(-12))/2 = (2 +/- 2sqrt(-3))/2 = 1+/- sqrt(-3) = 1 +/- i*sqrt(3)