Respuesta :

Answer:

The value of x in terms of b is: [tex]\mathbf{x=-\frac{6}{2b}}[/tex]

The value of x when b is 3 is: x = -1

Step-by-step explanation:

We are given the function: [tex]-2(bx-5)=16[/tex]

First we need to find

The value of x in terms of b

We need to find value of x

[tex]-2(bx-5)=16[/tex]

Multiply -2 with terms inside the bracket

[tex]-2bx+10=16[/tex]

Subtract 10 from both sides

[tex]-2bx+10-10=16-10\\-2bx=6[/tex]

Divide both sides by -2b

[tex]\frac{-2bx}{-2b}=\frac{6}{-2b}\\x=-\frac{6}{2b}[/tex]

So, The value of x in terms of b is: [tex]\mathbf{x=-\frac{6}{2b}}[/tex]

The value of x when b is 3

We have the equation for the value of x in terms of b:

[tex]\mathbf{x=-\frac{6}{2b}}[/tex]

Put b = 3

[tex]x=-\frac{6}{2(3)}\\x=-\frac{6}{6}\\x=-1[/tex]

So, The value of x when b is 3 is: x = -1