Answer:
The correct option is b
Explanation:
From the question we are told that
The resistance of the first resistor is [tex]R_1 = 39 \ \Omega[/tex]
The resistance of the second resistor is [tex]R_2 = 56 \ \Omega[/tex]
The capacitive reactance of the first capacitor is [tex]jX_{c_1 } = 80 \ \Omega[/tex]
The capacitive reactance of the first capacitor is [tex]jX_{c_2 } = 40 \ \Omega[/tex]
Generally given that the resistors are connected in parallel , their equivalent resistance is
[tex]R_e = R_1 +R_2[/tex]
=> [tex]R_e = 39 + 56[/tex]
=> [tex]R_e = 95 \ \Omega[/tex]
Generally given that the capacitors are connected in parallel , their equivalent capacitive reactance is
[tex]jX_e = jX_{c_1} + jX_{c_2}[/tex]
=> [tex]jX_e = 80 + 40[/tex]
=> [tex]jX_e = 120[/tex]
Hence the impedance of the circuit is
[tex]Z = R_e - jX_e[/tex]
=> [tex]Z = 95 - j120[/tex]
Generally from the impedance equation , the total used resistance is
[tex]R_e = 95 \ \Omega[/tex]