Based on a sample of 150 textbooks at the store, you find an average of 70.69 and a standard deviation of 29.6. The point estimate is: Incorrect (to 3 decimals) The 99 % confidence interval (use z*) is:______

Respuesta :

Answer:

Step-by-step explanation:

Given that:

The sample size = 150

The sample mean = 70.69

The standard deviation = 29.60

The sample mean is equal  to the point estimate of the population = 70.69

At 99% confidence interval level is:

∝ = 1 - 0.99

∝ = 0.01

The critical value:

[tex]Z_{\alpha/2} = Z_{0.01/2} \\ \\ Z_{0.005} = 2.58 \ using \ Z \ tables[/tex]

The Margin of error = [tex]Z_{\alpha/2} \times \dfrac{\sigma}{\sqrt{n}}[/tex]

[tex]= 2.58 \times \dfrac{29.6}{\sqrt{150}}[/tex]

= 2.58 × 2.4168

≅ 6.235

At 99% confidence interval; the estimate of the population mean lies within the interval:

= [tex]\overline x - E < \mu \ < \overline x + E[/tex]

= 70.69 - 6.235 < μ <  70.69 + 6.235

= 64.455  < μ < 76.925

= (64.455 , 76.925 )