Respuesta :

Answer: 8.41 g

Explanation:

To calculate the moles :

[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]

[tex]\text{Moles of} O_2=\frac{3.29g}{32g/mol}=0.103moles[/tex]

The balanced chemical equation for decomposition is :

[tex]2KClO_3\rightarrow 2KCl+3O_2[/tex]  

According to stoichiometry :

As 3 moles of [tex]O_2[/tex] are produced by = 2 moles of [tex]KClO_3[/tex]

Thus 0.103 moles of [tex]O_2[/tex] are produced by =[tex]\frac{2}{3}\times 0.103=0.0687moles[/tex]  of [tex]KClO_3[/tex]

Mass of [tex]KClO_3=moles\times {\text {Molar mass}}=0.0687moles\times 122.5g/mol=8.41g[/tex]

8.41 g was the mass of the original sample.