Respuesta :
Answer:
1.301 × 10⁻¹² m
Explanation:
Step 1: Given and required data
- Energy of the electromagnetic wave (E): 1.528 × 10⁻¹³ J
- Planck's constant (h): 6.626 × 10⁻³⁴ J . s
- Speed of light (c): 3.00 × 10⁸ m/s
Step 2: Calculate the wavelength (λ) of the electromagnetic wave
We can calculate the wavelength of the electromagnetic wave using the Planck-Einstein's relation.
E = h × c / λ
λ = h × c / E
λ = (6.626 × 10⁻³⁴ J . s) × (3.00 × 10⁸ m/s) / 1.528 × 10⁻¹³ J
λ = 1.301 × 10⁻¹² m
The wavelength of this wave is equal to: D. [tex]1.301 \times 10^{-12}\;meter[/tex]
Given the following data:
- Energy = [tex]1.528 \times 10^{-13} \;Joules[/tex]
- Plank's constant = [tex]6.626 \times 10^{-34}\;Js[/tex]
- Speed of light = [tex]3 \times 10^8\;m/s[/tex]
To determine the wavelength of this wave, we would apply Einstein's equation for photon energy:
Mathematically, Einstein's equation for photon energy is given by the formula:
[tex]E=\frac{hc}{\lambda}[/tex]
Where:
- E is the energy.
- h is Plank's constant.
- [tex]\lambda[/tex] is the wavelength.
- c is the speed of light.
Making [tex]\lambda[/tex] the subject of formula, we have:
[tex]\lambda = \frac{hc}{E}[/tex]
Substituting the given parameters into the formula, we have;
[tex]\lambda = \frac{6.626 \times 10^{-34}\; \times \;3.0 \times 10^{8}}{1.528 \times 10^{-13} }\\\\\lambda = \frac{1.99 \times 10^{-25}}{1.528 \times 10^{-13} }\\\\\lambda =1.301 \times 10^{-12}\;meter[/tex]
Read more: https://brainly.com/question/9655595