Respuesta :

Given:

The system of equations is

[tex]5g+4k=10[/tex]

[tex]-3g-5k=7[/tex]

To find:

The solution of given system of equations.

Solution:

We have,

[tex]5g+4k=10[/tex]        ...(i)

[tex]-3g-5k=7[/tex]         ..(ii)

Multiply (i) by 5 and (ii) by 4.

[tex]25g+20k=50[/tex]        ...(iii)

[tex]-12g-20k=28[/tex]         ..(iv)

Adding (iii) and (iv), we get

[tex]25g-12g=50+28[/tex]

[tex]13g=78[/tex]

Divide both sides by 13.

[tex]g=\dfrac{78}{13}[/tex]

[tex]g=6[/tex]

Put g=6 in (i).

[tex]5(6)+4k=10[/tex]

[tex]30+4k=10[/tex]

[tex]4k=10-30[/tex]

[tex]4k=-20[/tex]

Divide both sides by 4.

[tex]k=-5[/tex]

So, the solution of the system of equation is (6,-5).

Therefore, the correct option is A.