Given:
[tex]\dfrac{1}{4}x+\dfrac{3}{8}[/tex]
To find:
The factor form of given expression by the GCF.
Solution:
First we need to find the GCF of [tex]\dfrac{1}{4}[/tex] and [tex]\dfrac{3}{8}[/tex].
So, make denominators same.
[tex]\dfrac{1}{4}=\dfrac{1\times 2}{4\times 2}=\dfrac{2}{8}[/tex]
Now,
[tex]GCF\left(\dfrac{2}{8},\dfrac{3}{8}\right)=\dfrac{1}{8}[/tex]
[tex]GCF\left(\dfrac{1}{4},\dfrac{3}{8}\right)=\dfrac{1}{8}[/tex]
We have,
[tex]\dfrac{1}{4}x+\dfrac{3}{8}[/tex]
It can be written as
[tex]=\dfrac{2}{8}x+\dfrac{3}{8}[/tex]
Taking out the GCF [tex]\dfrac{1}{8}[/tex], we get
[tex]=\dfrac{1}{8}(2x+3)[/tex]
Therefore, the required factor form is [tex]\dfrac{1}{8}(2x+3)[/tex].