Respuesta :

Given:

[tex]\dfrac{1}{4}x+\dfrac{3}{8}[/tex]

To find:

The factor form of given expression by the GCF.

Solution:

First we need to find the GCF of [tex]\dfrac{1}{4}[/tex] and [tex]\dfrac{3}{8}[/tex].

So, make denominators same.

[tex]\dfrac{1}{4}=\dfrac{1\times 2}{4\times 2}=\dfrac{2}{8}[/tex]

Now,

[tex]GCF\left(\dfrac{2}{8},\dfrac{3}{8}\right)=\dfrac{1}{8}[/tex]

[tex]GCF\left(\dfrac{1}{4},\dfrac{3}{8}\right)=\dfrac{1}{8}[/tex]

We have,

[tex]\dfrac{1}{4}x+\dfrac{3}{8}[/tex]

It can be written as

[tex]=\dfrac{2}{8}x+\dfrac{3}{8}[/tex]

Taking out the GCF [tex]\dfrac{1}{8}[/tex], we get

[tex]=\dfrac{1}{8}(2x+3)[/tex]

Therefore, the required factor form is [tex]\dfrac{1}{8}(2x+3)[/tex].

Otras preguntas