Respuesta :

Answer:

The base and height of the solid is 5.5cm

Step-by-step explanation:

Given

[tex]Surface\ Area = 181.5cm^2[/tex]

Required

Determine the dimensions that maximizes the volume

Let the base dimension be x and the height be h

The volume is calculated as:

[tex]Volume =x^2 * h[/tex]

[tex]Volume =x^2h[/tex]

181.5 =x^2h

The surface area (S) is calculated as this:

[tex]S = 2(x^2 + xh + xh)[/tex]

[tex]S = 2(x^2 + 2xh)[/tex]

[tex]S = 2x^2 + 4xh[/tex]

Substitute 181.5 for S

[tex]181.5 = 2x^2 + 4xh[/tex]

Make h the subject:

[tex]4xh = 181.5 - 2x^2[/tex]

[tex]h = \frac{181.5 - 2x^2}{4x}[/tex]

Substitute [tex]h = \frac{181.5 - 2x^2}{4x}[/tex] in [tex]Volume =x^2h[/tex]

[tex]V = x^2(\frac{181.5 - 2x^2}{4x})[/tex]

[tex]V = x(\frac{181.5 - 2x^2}{4})[/tex]

[tex]V = \frac{1}{4}(x)(181.5 - 2x^2)[/tex]

[tex]V = \frac{181.5x}{4} - \frac{2x^3}{4}[/tex]

[tex]V = \frac{181.5x}{4} - \frac{x^3}{2}[/tex]

To get the maximum, we differentiate V with respect to t and set the differentiation to 0

[tex]dV = \frac{181.5}{4} - \frac{3x^2}{2}[/tex]

Set to 0

[tex]0 = \frac{181.5}{4} - \frac{3x^2}{2}[/tex]

[tex]\frac{3x^2}{2} = \frac{181.5}{4}[/tex]

Multiply through by 4

[tex]4 * \frac{3x^2}{2} = \frac{181.5}{4} * 4[/tex]

[tex]2*3x^2 = 181.5[/tex]

[tex]6x^2 = 181.5[/tex]

[tex]x^2 = \frac{181.5}{6}[/tex]

[tex]x^2 = 30.25[/tex]

[tex]x = \sqrt{30.25[/tex]

[tex]x = 5.5[/tex]

Recall that:

[tex]h = \frac{181.5 - 2x^2}{4x}[/tex]

[tex]h = \frac{181.5 - 2 * 5.5^2}{4 * 5.5}[/tex]

[tex]h = \frac{181.5 - 60.5}{22}[/tex]

[tex]h = \frac{121}{22}[/tex]

[tex]h = 5.5[/tex]

So, we have:

[tex]h = 5.5[/tex]

[tex]x = 5.5[/tex]

Hence, the base and height of the solid is 5.5cm