Respuesta :

Note: Consider the expression is [tex](4+\sqrt{2})(6-\sqrt{2})[/tex].

Given:

[tex](4+\sqrt{2})(6-\sqrt{2})[/tex]

To find:

The value of given expression in the form of [tex]b+c\sqrt{2}[/tex].

Solution:

We have,

[tex](4+\sqrt{2})(6-\sqrt{2})[/tex]

Using distributive property, we get

[tex]=4(6-\sqrt{2})+\sqrt{2}(6-\sqrt{2})[/tex]

[tex]=4(6)+4(-\sqrt{2})+\sqrt{2}(6)+\sqrt{2}(-\sqrt{2})[/tex]

[tex]=24-4\sqrt{2}+6\sqrt{2}-2[/tex]

On combining like terms, we get

[tex]=(24-2)+(6\sqrt{2}-4\sqrt{2})[/tex]

[tex]=22+2\sqrt{2}[/tex]

On comparing with [tex]b+c\sqrt{2}[/tex], we get

[tex]a=22,b=2[/tex]

Therefore, the required form is [tex]22+2\sqrt{2}[/tex].