Note: Consider the expression is [tex](4+\sqrt{2})(6-\sqrt{2})[/tex].
Given:
[tex](4+\sqrt{2})(6-\sqrt{2})[/tex]
To find:
The value of given expression in the form of [tex]b+c\sqrt{2}[/tex].
Solution:
We have,
[tex](4+\sqrt{2})(6-\sqrt{2})[/tex]
Using distributive property, we get
[tex]=4(6-\sqrt{2})+\sqrt{2}(6-\sqrt{2})[/tex]
[tex]=4(6)+4(-\sqrt{2})+\sqrt{2}(6)+\sqrt{2}(-\sqrt{2})[/tex]
[tex]=24-4\sqrt{2}+6\sqrt{2}-2[/tex]
On combining like terms, we get
[tex]=(24-2)+(6\sqrt{2}-4\sqrt{2})[/tex]
[tex]=22+2\sqrt{2}[/tex]
On comparing with [tex]b+c\sqrt{2}[/tex], we get
[tex]a=22,b=2[/tex]
Therefore, the required form is [tex]22+2\sqrt{2}[/tex].