Respuesta :

Given:

[tex]f(1)=3,f(n)=2\times f(n-1)[/tex]         ...(i)

For [tex]n\geq 2[/tex].

To find:

The nth term for the given recursive formula.

Solution:

The given recursive formula is of the form of

[tex]f(n)=r\times f(n-1)[/tex]            ...(ii)

It is the recursive formula of a GP, where r is common ratio.

On comparing (i) and (ii), we get

[tex]r=2[/tex]

Now,

First term: [tex]a=f(1)=3[/tex]

Common difference: [tex]r=2[/tex]

nth term of a GP is

[tex]f(n)=ar^{n-1}[/tex]

Putting a=3 and r=2, we get

[tex]f(n)=3(2)^{n-1}[/tex]

Therefore, the equation for the nth term is [tex]f(n)=3(2)^{n-1}[/tex].