4) Write the quadratic equation of the following in vertex form: vertex (-1,3) and passes through (1,-5)
I
ULTS
Factor completely
5) 15m2 - 6
6) 2x2 + 5x - 10% - 25

4 Write the quadratic equation of the following in vertex form vertex 13 and passes through 15 I ULTS Factor completely 5 15m2 6 6 2x2 5x 10 25 class=

Respuesta :

You will have to set up a system of equations

Answer:

Please check the explanation.

Step-by-step explanation:

4)

If an equation representing a parabola is in vertex form such as

[tex]y\:=a\left(x-k\right)^2+h[/tex]

then its vertex will be at (k, h).

Therefore the equation for a parabola with a vertex at (-1, 3), will have the general form

[tex]y\:=a\left(x+1\right)^2+3[/tex]

If this parabola also passes through the point (1, -5) then we can determine the  'a ' parameter.

[tex]-5\:=a\left(1+1\right)^2+3[/tex]

simplifying the equation

[tex]2^2a+3=-5[/tex]

[tex]4a+3=-5[/tex]

subtract 3 from both sides

[tex]4a+3-3=-5-3[/tex]

[tex]4a=-8[/tex]

Divide both sides by 4

[tex]\frac{4a}{4}=\frac{-8}{4}[/tex]

[tex]a=-2[/tex]

So our equation in vertex form is:

[tex]y\:=-2\left(x+1\right)^2+3[/tex]

5)

Given the expression

[tex]15n^2-6n[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c[/tex]

[tex]=15nn-6n[/tex]

[tex]\mathrm{Rewrite\:}6\mathrm{\:as\:}3\cdot \:2[/tex]

[tex]\mathrm{Rewrite\:}15\mathrm{\:as\:}3\cdot \:5[/tex]

[tex]=3\cdot \:5nn-3\cdot \:2n[/tex]

Factor out the common term 3n

[tex]=3n\left(5n-2\right)[/tex]

6)

Given the expression

[tex]2x^2+5x-10x-25[/tex]

Factor 2x²+5x: x(2x+5)

Factor -10x-25: -5(2x+5)

so the expression becomes

[tex]=x\left(2x+5\right)-5\left(2x+5\right)[/tex]

[tex]\mathrm{Factor\:out\:common\:term\:}\left(5+2x\right)[/tex]