the length of a rectangle is one unit more than its width. if the area of the rectangle is 56 square units,find the dimensions of the rectangle​

Respuesta :

Given:

The length of a rectangle is one unit more than its width.

Area of rectangle = 56 units

To find:

The dimensions of the rectangle​.

Solution:

Let, width of the rectangle be x.

Then, length of the rectangle = x+1

Area of a rectangle is

[tex]Area=length\times width[/tex]

[tex]56=(x+1)\times x[/tex]

[tex]56=x^2+x[/tex]

[tex]0=x^2+x-56[/tex]

By splitting the middle term, we get

[tex]x^2+8x-7x-56=0[/tex]

[tex]x(x+8)-7(x+8)=0[/tex]

[tex](x-7)(x+8)=0[/tex]

Using zero product property, we get

[tex]x-7=0[/tex] and [tex]x+8=0[/tex]

[tex]x=7[/tex] and [tex]x=-8[/tex]

Width cannot be negative. So, x=7.

Now,

Width = 7 units

Length = 7+1

            = 8 units

Therefore, the length of the rectangle is 8 units and width is 7 units.

Answer:

7

Step-by-step explanation: POV: I got it right