Respuesta :

Given:

The parent sine function is [tex]f(x)=x^2[/tex].

It shifts three units to the left and four units down.

To find:

The new function.

Solution:

The translation is defined as

[tex]f_1(x)=f(x+a)+b[/tex]                .... (1)

Where, a is horizontal shift and b is vertical shift.

If a>0, then the graph shifts a units left and if a<0, then the graph shifts a units right.

If b>0, then the graph shifts b units up and if b<0, then the graph shifts b units down.

Graph shifts 3 units to the left. So, a=3.

Graph shifts 4 units down. So, b=-4.

Putting a=3 and b=-4, we get

[tex]f_1(x)=f(x+3)-4[/tex]

[tex]f_1(x)=(x+3)^2-4[/tex]          [tex][\because f(x)=x^2][/tex]

Here, new function is also defined by f(x). So, [tex]f(x)=(x+3)^2-4[/tex].

Therefore, the correct option is d.