Helppp pleaseeee xxxxx

Answer:
[tex] h = 3\sqrt{3} [/tex]
[tex] c = 4\sqrt{2} [/tex]
Step-by-step explanation:
✔️Finding h using trigonometric ratio:
Reference angle = 60°
Opposite = h
Adjacent = 3
Thus:
[tex] tan(60) = \frac{h}{3} [/tex]
[tex] \sqrt{3} = \frac{h}{3} [/tex] (tan 60 = √3)
Multiply both sides by 3
[tex] 3\sqrt{3} = h [/tex]
[tex] h = 3\sqrt{3} [/tex]
✔️Finding c using trigonometric ratio:
Reference angle = 45°
Hypotenuse = 8
Adjacent = c
Thus:
[tex] cos(45) = \frac{c}{8} [/tex]
[tex] \frac{\sqrt{2}}{2} = \frac{c}{8} [/tex] (cos 45 = √2/2)
Multiply both sides by 8
[tex] \frac{\sqrt{2}}{2} \times 8 = c [/tex]
[tex] \sqrt{2} \times 4 = c [/tex]
[tex] c = 4\sqrt{2} [/tex]