Respuesta :

Answer:

[tex] h = 3\sqrt{3} [/tex]

[tex] c = 4\sqrt{2} [/tex]

Step-by-step explanation:

✔️Finding h using trigonometric ratio:

Reference angle = 60°

Opposite = h

Adjacent = 3

Thus:

[tex] tan(60) = \frac{h}{3} [/tex]

[tex] \sqrt{3} = \frac{h}{3} [/tex] (tan 60 = √3)

Multiply both sides by 3

[tex] 3\sqrt{3} = h [/tex]

[tex] h = 3\sqrt{3} [/tex]

✔️Finding c using trigonometric ratio:

Reference angle = 45°

Hypotenuse = 8

Adjacent = c

Thus:

[tex] cos(45) = \frac{c}{8} [/tex]

[tex] \frac{\sqrt{2}}{2} = \frac{c}{8} [/tex] (cos 45 = √2/2)

Multiply both sides by 8

[tex] \frac{\sqrt{2}}{2} \times 8 = c [/tex]

[tex] \sqrt{2} \times 4 = c [/tex]

[tex] c = 4\sqrt{2} [/tex]