Which expression is equivalent to (1/2(cos(pi/5)+ i sin(pi/5)))^5

a. 1/32(cos(pi/5) + i sin (pi/5))
b. 1/32(cos(pi) + i sin (pi))
C. 1/10(cos(pi/5) + i sin (pi/5))
d. 1/10(cos(pi) + i sin (pi))

Respuesta :

Answer:

B

Step-by-step explanation:

did the course

The equivalent complex expression of [tex](\frac{1}{2}(cos(\frac{\pi}{5} )+i~sin(\frac{\pi}{5} )) )^5[/tex] is

[tex]\frac{1}{32} (cos(\pi)+i~sin(\pi))[/tex]

The correct answer is an option (b)

What is complex number?

"The number of the form a + ib, where a, b are real numbers and [tex]i=\sqrt{-1}[/tex]"

What is De Moivre's theorem?

"This theorem gives a formula for computing powers of complex numbers.

[tex](r(cos\theta+i~sin\theta))^n=r^n~(cos(n\theta)+i~sin(n\theta))[/tex] "

For given question,

We have been given a complex expression [tex](\frac{1}{2}(cos(\frac{\pi}{5} )+i~sin(\frac{\pi}{5} )) )^5[/tex]

Using the DeMoivre's theorem,

[tex](\frac{1}{2}(cos(\frac{\pi}{5} )+i~sin(\frac{\pi}{5} )) )^5\\\\=(\frac{1}{2})^5~((cos(\frac{\pi}{5} )+i~sin(\frac{\pi}{5} )) )^5\\\\=\frac{1}{32} (cos(\frac{5\pi}{5} )+i~sin(\frac{5\pi}{5} )) )\\\\= \frac{1}{32} (cos(\pi)+i~sin(\pi))[/tex]

Therefore, the equivalent complex expression of [tex](\frac{1}{2}(cos(\frac{\pi}{5} )+i~sin(\frac{\pi}{5} )) )^5[/tex] is

[tex]\frac{1}{32} (cos(\pi)+i~sin(\pi))[/tex]

The correct answer is an option (b)

Learn more about the De Moivre's theorem here:

https://brainly.com/question/17211848

#SPJ3