Respuesta :

Given:

[tex]\ln(y-8)=-2x+\ln C[/tex]

To find:

y as a function of x.

Solution:

We have,

[tex]\ln(y-8)=-2x+\ln C[/tex]

It can be written as

[tex]\ln(y-8)=\ln e^{-2x}+\ln C[/tex]           [tex][\because \ln e^x=x][/tex]

[tex]\ln(y-8)=\ln (Ce^{-2x})[/tex]           [tex][\because \ln (ab)=\ln a+\ln b][/tex]

On comparing both sides, we get

[tex]y-8=Ce^{-2x}[/tex]

Adding 8 on both sides, we get

[tex]y=Ce^{-2x}+8[/tex]

Therefore, the equation function is [tex]y=Ce^{-2x}+8[/tex].