1.
For the function f(x) =
8x + 10, find the inverse function.
O
x2 - 10
f-4x) =
-,X20
8
O
(x - 10)2
f-1(x) =
x2 10
8
f-1(x)
X2 + 10
8
,*20
x2 - 10
f-4(x) =
-, X30
8

Respuesta :

Answer:

The inverse of [tex]f(x)=8x+10[/tex] is [tex]\mathbf{f^{-1}(x)=\frac{x-10}{8}}[/tex]

Step-by-step explanation:

[tex]f(x)=8x+10[/tex]

We need to find inverse of the function.

For finding inverse of function,

let [tex]y=8x+10[/tex]

Now, solving to find value of x

Subtracting 10 on both sides

[tex]y-10=8x+10-10\\y-10=8x[/tex]

Divide both sides by 8

[tex]\frac{8x}{8}=\frac{y-10}{8} \\x=\frac{y-10}{8}[/tex]

Now replace y with x and x with [tex]f^{-1}(x)[/tex]

[tex]f^{-1}(x)=\frac{x-10}{8}[/tex]

So, the inverse of [tex]f(x)=8x+10[/tex] is [tex]\mathbf{f^{-1}(x)=\frac{x-10}{8}}[/tex]

Answer:

The answer is [tex]f^(-1)(x)= (x^(2) - 10)/(8), x > =0[/tex]