Which graph represents the solutions to the inequality |2x - 6 < 4? (5 points)
-9-8-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
-9-8-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
9
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
-9-8-7 -6 -5 -4 -3 -2 -1
0 1 2 3 4 5 6 7 8 9

Which graph represents the solutions to the inequality 2x 6 lt 4 5 points 987 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 987 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 9 8 7 6 5 4 3 class=

Respuesta :

Answer:

[tex]\left|2x-6\right|<4\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:1<x<5\:\\ \:\mathrm{Interval\:Notation:}&\:\left(1,\:5\right)\end{bmatrix}[/tex]

Therefore, the 3rd graph represents the solutions to inequality.

Please also check the graph below.

Step-by-step explanation:

Given the expression

[tex]|2x\:-\:6|\:<\:4[/tex]

[tex]\mathrm{Apply\:absolute\:rule}:\quad \mathrm{If}\:|u|\:<\:a,\:a>0\:\mathrm{then}\:-a\:<\:u\:<\:a[/tex]

[tex]-4<2x-6<4[/tex]

[tex]2x-6>-4\quad \mathrm{and}\quad \:2x-6<4[/tex]

condition 1

[tex]2x-6>-4[/tex]

Add 6 to both sides

[tex]2x-6+6>-4+6[/tex]

[tex]2x>2[/tex]

Divide both sides by 2

[tex]\frac{2x}{2}>\frac{2}{2}[/tex]

[tex]x>1[/tex]

condition 2

[tex]2x-6<4[/tex]

Add 6 to both sides

[tex]2x-6+6<4+6[/tex]

[tex]2x<10[/tex]

Divide both sides by 2

[tex]\frac{2x}{2}<\frac{10}{2}[/tex]

[tex]x<5[/tex]

combine the intervals

[tex]x>1\quad \mathrm{and}\quad \:x<5[/tex]

Merging overlapping intervals

[tex]1<x<5[/tex]

Thus,

[tex]\left|2x-6\right|<4\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:1<x<5\:\\ \:\mathrm{Interval\:Notation:}&\:\left(1,\:5\right)\end{bmatrix}[/tex]

Therefore, the 3rd graph represents the solutions to inequality.

Please also check the graph below.

Ver imagen absor201