Respuesta :

Answer:

The equation of the line:

[tex]y=\frac{3}{2}x+9[/tex]

Step-by-step explanation:

Given

  • The point (-4, 3)
  • m = -2/3

We know that a line perpendicular to another line contains a slope that is the negative reciprocal of the slope of the other line, such as:

slope = m = -2/3

perpendicular to m = -1/m

                                 [tex]=-\frac{1}{\left(\frac{-2}{3}\right)}=\frac{3}{2}[/tex]

Using the point-slope form of the line equation

[tex]y-y_1=m\left(x-x_1\right)[/tex]

substituting the values m = 3/2 and the point (-4, 3)

[tex]y-3=\frac{3}{2}\left(x-\left(-4\right)\right)[/tex]

[tex]y-3=\frac{3}{2}\left(x+4\right)[/tex]

Add 3 to both sides

[tex]y-3+3=\frac{3}{2}\left(x+4\right)+3[/tex]

[tex]y=\frac{3}{2}x+9[/tex]

Thus, the equation of the line:

[tex]y=\frac{3}{2}x+9[/tex]