Respuesta :
Note that this a right-angled triangle with the right angle at Y.
Use coordinates of the point to find XY and YZ
XY = 21 - (-3)
= 24
YZ = 4 - (-6)
= 10
Use Pythagoras theorem to XZ
XZ = sqrt[24^2 + 10^2]
= 26
Perimeter = 26 + 24 + 10
= 60
Use coordinates of the point to find XY and YZ
XY = 21 - (-3)
= 24
YZ = 4 - (-6)
= 10
Use Pythagoras theorem to XZ
XZ = sqrt[24^2 + 10^2]
= 26
Perimeter = 26 + 24 + 10
= 60
Answer:
60 units
Step-by-step explanation:
Given: The vertices of XYZ are [tex]X(-3,-6)[/tex], [tex]Y(21,-6)[/tex], and [tex]Z(21,4)[/tex]
To find: Perimeter of the triangle.
Solution:
We know that the distance between two points [tex]A(x_{1},y_{1})[/tex] and [tex]B(x_{2},y_{2})[/tex] is [tex]\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} }[/tex]
We have, the vertices of triangle XYZ as [tex]X(-3,-6)[/tex], [tex]Y(21,-6)[/tex], and [tex]Z(21,4)[/tex]
So,
[tex]XY=\sqrt{(21+3)^{2}+(-6+6)^{2}}=24[/tex]
[tex]YZ=\sqrt{(21-21)^{2}+(4+6)^{2}}=10[/tex]
[tex]ZX=\sqrt{(21+3)^{2}+(4+6)^{2}[/tex]
[tex]ZX=\sqrt{(24)^{2}+(10)^{2}[/tex]
[tex]ZX=\sqrt{576+100}[/tex]
[tex]ZX=\sqrt{676}=26[/tex]
Now, we have [tex]XY=24[/tex], [tex]YZ=10[/tex], and [tex]ZX=26[/tex]
Perimeter of Δ[tex]XYZ=24+10+26=60[/tex]
Hence, perimeter of ΔXYZ is 60 units.