Respuesta :
Answer: 6.2 m/s
Explanation:
1) This is a projectile motion (parabolic)
2) Velocity:
i) initial velocity = V₀
ii) Horizontal component:
V₀x = V₀ cos α
The horizontal velocity is constant, so Vx = V₀x
ii) Vertical component:
V₀y = V₀ sin α
The vertical component is linear with acceleration = g ≈ 9.8 m/s²
Vy = V₀y - gt = V₀ sin α - gt
3) Displacement equations
i) Horizontal displacment:
x = V₀ cosα t
ii) Vertical displacement:
y = V₀ sin α t - g t² / 2
y ≈ V₀ sin α t - 4.9 t²
4) Solution
i) x = V₀ cosα t = V₀ cos(32°) t = 2.00 m ← salmon starts 2.00m from a waterfall
⇒ V₀ = 2 / [cos(32°) t ]
ii) y = V₀ sin α t - 4.9 t² = V₀ sin(32°) t - 4.9 t²
iii) Replace V₀ with 2 / [cos(32°) t ]
y = sin(32°) × 2 / [cos(32°) t ] × t - 4.9t² = 2 tan(32°) - 4.9t²
iv) Use jump's height (y = 0.55m) and solve
⇒ 0.55 = 2 tan(32°) - 4.9t²
t² = [2 tan(32°) - 0.55 ] / 4.9 = 0.143 s²
⇒ t = √ (0.143s²) = 0.38 s
v) Use V₀ = 2 / [cos(32°) t ] to find V₀
V₀ = 2 / [cos(32°) (0.38) ] = 6.2 m/s
The salmon's minimum speed must be 6.24 m/s to reach the waterfall
Further explanation
Acceleration is rate of change of velocity.
[tex]\large {\boxed {a = \frac{v - u}{t} } }[/tex]
[tex]\large {\boxed {d = \frac{v + u}{2}~t } }[/tex]
a = acceleration ( m/s² )
v = final velocity ( m/s )
u = initial velocity ( m/s )
t = time taken ( s )
d = distance ( m )
Let us now tackle the problem!
This problem is about Projectile Motion
Given:
Horizontal distance = x = 2.00 m
Vertical distance = y = 0.55 m
Angle of projection = θ = 32.0°
Unknown:
Initial speed = u = ?
Solution:
[tex]x = u \times \cos \theta \times t[/tex]
[tex]t = \boxed{\frac{x}{u \cos \theta}}[/tex] → Equation 1
[tex]y = (u \times \sin \theta \times t) - (\frac{1}{2}\times g \times t^2)[/tex]
[tex]y = (u \times \sin \theta \times \frac{x}{u \cos \theta}) - (\frac{1}{2}\times g \times (\frac{x}{u \cos \theta})^2)[/tex] ← Equation 1
[tex]y = (x \tan \theta) - (\frac{gx^2}{2u^2 \cos ^2 \theta})[/tex]
[tex]0.55 = (2.00 \tan 32^o) - (\frac{9.8 (2.00)^2}{2u^2 \cos ^2 32^o})[/tex]
[tex]0.55 = 1.25 - \frac{27.3}{u^2}[/tex]
[tex]\frac{27.3}{u^2} = 1.25 - 0.55[/tex]
[tex]u^2 = \frac{27.3}{1.25 - 0.55}[/tex]
[tex]u = \sqrt {\frac{27.3}{1.25 - 0.55}}[/tex]
[tex]u = \sqrt {39}[/tex]
[tex]u \approx \boxed {6.24 ~ \text{m/s}}[/tex]
Learn more
- Velocity of Runner : https://brainly.com/question/3813437
- Kinetic Energy : https://brainly.com/question/692781
- Acceleration : https://brainly.com/question/2283922
- The Speed of Car : https://brainly.com/question/568302
Answer details
Grade: High School
Subject: Physics
Chapter: Kinematics
Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle
