Respuesta :

- Vertex : ( 0, 0 ).
- Focus: ( p/2, 0 );
y² = 1/4 x
y² = 2 p x  ⇒ 2 p = 1/4
p = 1/8
p/2 = 1/16
F ( 1/16, 0)
- Directrix:
x = - p/2 x
x = - 1/16 x
- The focal length:
2 p = 2 · 1/8 = 1/4

Answer:

The vertex is (0,0), focus of the parabola is [tex](\frac{1}{16},0)[/tex], directrix of the parabola is [tex]y=-\frac{1}{16}[/tex], focal width is [tex]\frac{1}{4}[/tex].

Step-by-step explanation:

The given equation of parabola is

[tex]x=4y^2[/tex]

It can be written as

[tex]y^2=\frac{1}{4}x[/tex]           ....(1)

The general equation of parabola is

[tex](y-k)^2=4p(x-h)[/tex]           ... (2)

Where, (h,k) is vertex, (h+p,k) is focus, y=h-p is directrix and |4p| is focal width.

On comparing (1) and (2), we get

[tex]h=0,k=0[/tex]

The vertex is (0,0).

[tex]4p=\frac{1}{4}[/tex]

[tex]p=\frac{1}{16}[/tex]

Focus of the parabola is

[tex](h+p,k)=(0+\frac{1}{16},0)=(\frac{1}{16},0)[/tex]

Therefore focus of the parabola is [tex](\frac{1}{16},0)[/tex].

Directrix of the parabola is

[tex]y=h-p=0-\frac{1}{16}=-\frac{1}{16}[/tex]

Directrix of the parabola is [tex]y=-\frac{1}{16}[/tex].

Focal width is

[tex]|4p|=|4\times \frac{1}{16}|=\frac{1}{4}[/tex]

Focal width is [tex]\frac{1}{4}[/tex].