f(x)=4x+7. Find the inverse of f(x).

A.{f^{ - 1}}\left( x \right) = \frac{{x - 7}}{4}f −1 (x)= 4x−7
​B.{f^{ - 1}}\left( x \right) = 7 - 4xf −1 (x)=7−4x
C.{f^{ - 1}}\left( x \right) = \frac{{x - 4}}{7}f −1 (x)= 7x−4
​D.{f^{ - 1}}\left( x \right) = 4x - 7f −1(x)=4x−7
it a i need for later

Respuesta :

Answer:

Step-by-step explanation:

f(x) = y = 4x + 7

Solve for "x"

4x + 7 = y ⇒ x = [tex]\frac{1}{4}[/tex] y - [tex]\frac{7}{4}[/tex]

Exchange the places "x" and "y"

[tex]f^{-1}[/tex](x) = [tex]\frac{1}{4}[/tex] x - [tex]\frac{7}{4}[/tex]  

or [tex]f^{-1}[/tex] (x) = [tex]\frac{x-7}{4}[/tex]

Otras preguntas