An object on a planet has a mass of 243 kg. What is the acceleration of the
object, if the radius of the planet is 2.32 x 10^7 m, and the mass of planet is
6.35 x 10^30 kg? Estimate G as 6.67 x 10^-11 N (m/kg)^2

Respuesta :

Answer:

The gravitational acceleration of a planet of mass M and radius R

a = G*M/R^2.

In this case we have:

G = 6.67 x 10^-11 N (m/kg)^2

R = 2.32 x 10^7 m

M = 6.35 x 10^30 kg

Now we can compute:

a = (6.67*6.35/2.32^2)x10^(-11 + 30 - 2*7) m/s^2 = 786,907.32 m/s^2

The acceleration does not depend on the mass of the object.

The acceleration of the object is [tex]3.01*10^{-23}m/s^{2} [/tex]

The gravitational acceleration of object is computed by formula shown below,

                   [tex]acceleration(a)=G\frac{m}{R^{2} } [/tex]

Where G is gravitational constant, m is mass of object and R is radius of planet.

Given that,  [tex]G=6.67*10^{-11}Nm^{2}/Kg^{2} ,m=243Kg,R=2.32*10^{7} m[/tex]

Substitute values in formula.

   [tex]a=6.67*10^{-11}*\frac{243}{(2.32*10^{7})^{2} } \\ \\ a=6.67*10^{-11}*4.51*10^{-13}\\ \\ a=3.01*10^{-23}m/s^{2} [/tex]

Learn more:

https://brainly.com/question/14374981