Respuesta :
Answer:
The gravitational acceleration of a planet of mass M and radius R
a = G*M/R^2.
In this case we have:
G = 6.67 x 10^-11 N (m/kg)^2
R = 2.32 x 10^7 m
M = 6.35 x 10^30 kg
Now we can compute:
a = (6.67*6.35/2.32^2)x10^(-11 + 30 - 2*7) m/s^2 = 786,907.32 m/s^2
The acceleration does not depend on the mass of the object.
The acceleration of the object is [tex]3.01*10^{-23}m/s^{2} [/tex]
The gravitational acceleration of object is computed by formula shown below,
[tex]acceleration(a)=G\frac{m}{R^{2} } [/tex]
Where G is gravitational constant, m is mass of object and R is radius of planet.
Given that, [tex]G=6.67*10^{-11}Nm^{2}/Kg^{2} ,m=243Kg,R=2.32*10^{7} m[/tex]
Substitute values in formula.
[tex]a=6.67*10^{-11}*\frac{243}{(2.32*10^{7})^{2} } \\ \\ a=6.67*10^{-11}*4.51*10^{-13}\\ \\ a=3.01*10^{-23}m/s^{2} [/tex]
Learn more:
https://brainly.com/question/14374981