Respuesta :

Answer: By itch hiking

Step-by-step explanation:

The sum (or difference) of 2 terms of the same type is a common stereotype with such a coefficient equal to the sum of the coefficient of two coefficients.

When two algebraic expressions are added (or removed), the same terms are added (or subtracted), and different terms are written as required.

Following are the solution to the given points:

[tex]1)\ (6x+5)+(-3x+7)=(6x+5-3x+7)= \bold{3x+12}\\\\ 2) (-9x - 13) + (8x+3)= (-9x -13 + 8x+3)= -x-10=\bold{-(x+10)}\\\\3)\ (2x - 8) - (4x- 2)=(2x - 8 - 4x+ 2)= \bold{-2x-6} \\\\4)\ (5x+8)-(6x+2)=(5x+8-6x-2)= \bold{(-x+6)}\\\\5)\ (3x^2 -6x-7) + (-2x^2-4x+ 12)= (3x^2 -6x-7 -2x^2-4x+ 12)= \bold{(x^2 -10x-5)}\\\\[/tex]

[tex]6)\ (-x^2-5x+8)- (4x^2-7x-10)= (-x^2-5x+8- 4x^2+7x+10)= \bold{(-5x^2+2x+18)} \\\\7) \ (6x^2-3x+10)-(-6x^2+11x+9)=(6x^2-3x+10+6x^2-11x-9)= \bold{(12x^2-14x+1)}\\\\[/tex]

[tex]8)\ (-13x^3 +15x^2 -12x) +(-x^3- 4x^2 -15x +1)= (-13x^3 +15x^2 -12x -x^3- 4x^2 -15x +1)= \bold{(-14x^3 +11x^2 -27x +1)} \\\\9)\ (7x^3-x+14)-(2x^2-19)= (7x^3-x+14-2x^2+19)= \bold{ (7x^3-2x^2-x+33)}\\\\10) \ (8x-3x^3-5) + (4x^3-6x^2+11)= (8x-3x^3-5 + 4x^3-6x^2+11)= \bold{(x^3 -6x^2+ 8x+6)}\\\\11)\ (-5x -16) - (-3x^3+ 2x^2 +9x)= (-5x -16 +3x^3- 2x^2 -9x)= \bold{(3x^3-2x^2-14x-16)}\\[/tex]Learn more:

brainly.com/question/11227332

Ver imagen codiepienagoya