Answer:
[tex]\huge\boxed{(3^4)^4=3^8\cdot3^8}\\\boxed{4^3\cdot5^3=20^3}\\\boxed{(4^3)^3=4^3\cdot4^3\cdo4^3}[/tex]
Step-by-step explanation:
[tex]a^n\cdot a^n=a^{n+m}\\\\(a^n)^m=a^{n\cdot m}\\\\(a\cdot b)^n=a^n\cdot b^n\\=====================[/tex]
[tex](4^3)^3=4^{3\cdot3}=4^9\\4^3\cdot4^3=4^{3+3}=4^6\\\\4^9\neq4^6\to(4^3)^3\neq4^3\cdot4^3\\==================[/tex]
[tex](3^4)^4=3^{4\cdot4}=3^{16}\\3^8\cdot3^8=3^{8+8}=3^{16}\\\\(3^4)^4=3^8\cdot3^8\\================[/tex]
[tex]6^4\cdot3^4=(6\cdot3)^4=18^4\\\\18^4\neq18^8\to6^4\cdot3^4\neq18^8\\=================[/tex]
[tex]4^3\cdot5^3=(4\cdot5)^3=20^3\\\\4^3\cdot5^3=20^3\\=================[/tex]
[tex](4^3)^3=4^{3\cdot3}=4^9\\4^3\cdot4^3\cdot4^3=4^{3+3+3}=4^9\\\\(4^3)^3=4^3\cdot4^3\cdot4^3[/tex]