Answer: ($19.8, $20.8)
Step-by-step explanation:
Confidence interval for mean : [tex]\overline{x}\pm z^*\dfrac{\sigma}{\sqrt{n}}[/tex] , where [tex]\overline{x}[/tex] = Sample mean, n= sample size, [tex]\sigma[/tex] = population standard deviation, z* = two tailed critical z-value.
Given: [tex]\overline{x}[/tex] = $20.3
n= 2333
[tex]\sigma[/tex] = $11.3
For 98% confidence, z* = 2.326
Then, the98% confidence interval for population mean will be:
[tex]20.3\pm (2.326)\dfrac{11.3}{\sqrt{2333}}\\\\=20.3\pm (2.326)\dfrac{11.3}{48.3011387}\\\\=20.3\pm (0.544165224825)\\\\\approx 20.3\pm 0.5\\\\=(20.3-0.5,\ 20.3+0.5)\\\\=(19.8,20.8)[/tex]
Hence, the 98% confidence interval for the mean per capita income in thousands of dollars = (19.8, 20.8)