Respuesta :

Given :

Area of rectangle.

To Find :

The dimensions of a rectangle (in m) with area 1,728 m2 whose perimeter is as small as possible.

Solution :

Let, the dimensions of rectangle is x and y.

Area, A = xy.

x = A/y.              ....1)

Perimeter, P = 2( x + y )

Putting value of x in above equation, we get :

[tex]P = 2( y + \dfrac{A}{y})[/tex]

For minimum P,

[tex]\dfrac{dP}{dx}=2( 1 - \dfrac{A}{x^2})=0\\\\A = x^2[/tex]

SO, it is a square.

[tex]x=\sqrt{A}\\\\x=\sqrt{1728\ m^2}\\\\x=24\sqrt{3}\ m[/tex]

Therefore, the dimensions are [tex](24\sqrt{3},24\sqrt{3})[/tex].24\sqrt{3}

Hence, this is the required solution.

The perimeter of the rectangle is the sum of its dimensions

The dimensions that minimize the perimeter are 41.6, 41.6

The area is given as:

[tex]\mathbf{A = 1728}[/tex]

Let the dimension be x and y.

So, we have:

[tex]\mathbf{A = xy = 1728}[/tex]

Make x the subject

[tex]\mathbf{x = \frac{1728}{y}}[/tex]

The perimeter is calculated as:

[tex]\mathbf{P = 2(x + y)}[/tex]

Substitute [tex]\mathbf{x = \frac{1728}{y}}[/tex]

[tex]\mathbf{P = 2(\frac{1728}{y} + y)}[/tex]

Expand

[tex]\mathbf{P = \frac{3456}{y} + 2y}[/tex]

Differentiate

[tex]\mathbf{P' = -\frac{3456}{y^2} + 2}[/tex]

Set to 0

[tex]\mathbf{ -\frac{3456}{y^2} + 2 = 0}[/tex]

Rewrite as:

[tex]\mathbf{ -\frac{3456}{y^2} = -2}[/tex]

Divide both sides by -1

[tex]\mathbf{\frac{3456}{y^2} = 2}[/tex]

Multiply y^2

[tex]\mathbf{3456= 2y^2}[/tex]

Divide by 2

[tex]\mathbf{1728= y^2}[/tex]

Take square roots of both sides

[tex]\mathbf{y = \sqrt{1728}}[/tex]

[tex]\mathbf{y = 41.6}[/tex]

Substitute [tex]\mathbf{y = \sqrt{1728}}[/tex] in [tex]\mathbf{x = \frac{1728}{y}}[/tex]

[tex]\mathbf{x = \frac{1728}{\sqrt{1728}}}[/tex]

[tex]\mathbf{x = \sqrt{1728}}[/tex]

[tex]\mathbf{x = 41.6}[/tex]

Hence, the dimensions that minimize the perimeter are 41.6, 41.6

Read more about perimeters at:

https://brainly.com/question/6465134