Answer:
The range of f(x) is:
[tex]y\in\{-1,0,1\}[/tex]
Step-by-step explanation:
Domain and Range
Given a function y=f(x), the domain of f(x) is the set of values that x can take and the range of f(x) is the set of values that f gets when x is in the domain.
We have the function:
[tex]\displaystyle f(x) = \frac{1}{2} x-2[/tex]
And the domain is
[tex]x\in\{2,4,6\}[/tex]
Compute the range by assigning each value of x:
For x=2:
[tex]\displaystyle f(2) = \frac{1}{2} \cdot 2-2=1-2=-1[/tex]
[tex]\displaystyle f(2) = -1[/tex]
For x=4:
[tex]\displaystyle f(4) = \frac{1}{2} \cdot 4-2=2-2=0[/tex]
[tex]\displaystyle f(4) = 0[/tex]
For x=6:
[tex]\displaystyle f(6) = \frac{1}{2} \cdot 6-2=3-2=1[/tex]
[tex]\displaystyle f(6) = 1[/tex]
The range of f(x) is:
[tex]y\in\{-1,0,1\}[/tex]