Respuesta :
Answer:
The answer is "0.9258201 or [tex]\bold{ \frac{0.36 -0.3}{\sqrt{\frac{0.3 \times 0.7 }{50}}}}[/tex]".
Step-by-step explanation:
[tex]\to P= 30 \ \%\\\\ \to x= 18 \\\\ \to n=50\\\\\\\hat p= \frac{x}{n} = \frac{18}{50} = 0.36 \\\\\bold{Formula:}\\\\X= \frac{\hat p -p}{\sqrt{\frac{p \times (1-p)}{n}}}\\\\[/tex]
[tex]= \frac{0.36 -0.3}{\sqrt{\frac{0.3 \times (1-0.3)}{50}}}\\\\= \frac{0.36 -0.3}{\sqrt{\frac{0.3 \times 0.7 }{50}}}\\\\= \frac{0.36 -0.3}{\sqrt{\frac{0.21}{50}}}\\\\= \frac{0.06}{\sqrt{0.0042}}\\\\= \frac{0.06}{0.064807407}\\\\= 0.9258201[/tex]