Answer:
Step-by-step explanation:
Use the power rule of differentiation:
[tex]x^n=nx^n^-^1\\7*\frac{8}{7} x^\frac{1}{7} =8x^\frac{1}{7} \\-5*\frac{1}{6} x^\frac{-5}{6} =-\frac{5}{6} x^\frac{-5}{6} \\8x^\frac{1}{7} -\frac{5}{6} x^\frac{-5}{6} =y'[/tex]
Now take the derivative of that function:
[tex]8*\frac{1}{7} x^\frac{-6}{7} =\frac{8}{7} x^\frac{-6}{7} \\-\frac{5}{6} *\frac{-5}{6} x^\frac{-11}{6} =\frac{25}{36} x^\frac{-11}{6}\\\frac{8}{7} x^\frac{-6}{7} +\frac{25}{36} x^\frac{-11}{6} =y''[/tex]
Now simplify:
[tex]\frac{8}{7\sqrt[7]{x^6} } +\frac{25}{36\sqrt[6]{x^1^1} } =y''[/tex]