An unstrained horizontal spring has a length of 0.34 m and a spring constant of 180 N/m. Two small charged objects are attached to this spring, one at each end. The charges on the objects have equal magnitudes. Because of these charges, the spring stretches by 0.024 m relative to its unstrained length. Determine (a) the possible algebraic signs and (b) the magnitude of the charges. g

Respuesta :

Answer:

a

         [tex]q_1 = -1.389 *10^{-5} \  C [/tex]   , [tex]q_2 = -1.389 *10^{-5} \  C [/tex]

OR

           [tex]q_1 = 1.389 *10^{-5} \  C [/tex]   , [tex]q_2 = 1.389 *10^{-5} \  C [/tex]    

b

[tex]q_1 = 1.389 *10^{-5} \ C [/tex] and [tex]q_2 = 1.389 *10^{-5} \ C [/tex]

Explanation:

Generally the force exerted on the string is mathematically represented as

[tex]F = k * e[/tex]

substituting values 180 N/m for k and 0.024 m for e

[tex]F = 180 * 0.024[/tex]

[tex]F = 4.32 \ N[/tex]

This force can also equivalent to the electrostatic force between the charges i.e

[tex]F = k * \frac{q^2}{ r^2}[/tex]

substituting [tex]9*10^{9}\ kg\cdot m^3\cdot s^{-4} \cdot A^{-2}.[/tex] for k and ( 0.34 + 0.024 = 0.364 m) for r we have

[tex] 4.32= 9*10^{9} * \frac{q^2}{ (0.364)^2}[/tex]

[tex]q = \sqrt{1.929 *10^{-10}}[/tex]

[tex]q = 1.389 *10^{-5} \ C [/tex]

Given the spring was stretched it means that the force between the charges is a repulsive for which tell us that both charge are of the same sign thus the possible  algebraic signs  of the charges are

         [tex]q_1 = -1.389 *10^{-5} \  C [/tex]   , [tex]q_2 = -1.389 *10^{-5} \  C [/tex]

OR

[tex]q_1 = 1.389 *10^{-5} \ C [/tex] , [tex]q_2 = 1.389 *10^{-5} \ C [/tex]