Calculate the number of hydrogen atoms in a 110.0 sample of tetraborane(B4H10) . Be sure your answer has a unit symbol if necessary, and round it to 4 significant digits.

Respuesta :

znk

Answer:

[tex]1.242 \times 10^{25}\text{ atoms H}[/tex]

Explanation:

You must convert the mass of B₄H₁₀ to moles of B₄H₁₀, then to molecules of B₄H₁₀, and finally to atoms of H.

1. Moles of B₄H₁₀

[tex]\text{Moles of B$_{4}$H}_{10} = \text{110.0 g B$_{4}$H}_{10} \times \dfrac{\text{1 mol B$_{4}$H}_{10}}{\text{53.32 g B$_{4}$H}_{10}} = \text{2.063 mol B$_{4}$H}_{10}[/tex]

2. Molecules of B₄H₁₀

[tex]\text{No. of molecules} = \text{2.063 mol B$_{4}$H}_{10} \times \dfrac{6.022 \times 10^{23}\text{ molecules B$_{4}$H}_{10}}{\text{1 mol B$_{4}$H}_{10}}\\\\=1.242 \times 10^{24}\text{ molecules B$_{4}$H}_{10}[/tex]

3. Atoms of H

[tex]\text{Atoms of H} = 1.242 \times 10^{24}\text{ molecules B$_{4}$H}_{10} \times \dfrac{\text{10 atoms H}}{\text{1 molecule B$_{4}$H}_{10}}\\\\= \mathbf{1.242 \times 10^{25}}\textbf{ atoms H}[/tex]