Respuesta :

Step-by-step explanation:

[tex] \frac{ \sin(3A) + \sin(A) }{2 \sin(2A) } [/tex]

Using the trigonometric identity

[tex] \sin(x) + \sin(y) = 2 \sin( \frac{x + y}{2} ) \cos( \frac{x - y}{2} ) [/tex]

Rewrite the expression

We have

[tex] \frac{2 \sin(2A) \cos(A) }{2 \sin(2A) } [/tex]

Reduce the fraction with 2

That's

[tex] \frac{ \sin(2A) \cos(A) }{ \sin(2A) } [/tex]

Reduce the fraction with sin 2A

We have the final answer as

cos A

As proven

Hope this helps you