Respuesta :
Answer:
Step-by-step explanation:
Hello, please consider the following.
[tex]x(t)=sin(t)\\\\dx=cos(t)dt\\\\\text{For x = }\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2} \text{ we have } t = \dfrac{\pi}{4}[/tex]
So, we can write.
[tex]\displaystyle \int\limits^{\dfrac{1}{\sqrt{2}}}_0 {\dfrac{1}{\sqrt{1-x^2}}} \, dx =\int\limits^{\dfrac{\pi}{4}}_0 {\dfrac{cos(t)}{\sqrt{1-sin^2(t)}}} \, dt\\\\=\int\limits^{\dfrac{\pi}{4}}_0 {\dfrac{cos(t)}{\sqrt{cos^2(t)}}} \, dt\\\\=\int\limits^{\dfrac{\pi}{4}}_0 {\dfrac{cos(t)}{cos(t)}} \, dt \\\\=\int\limits^{\dfrac{\pi}{4}}_0 {1} \, dt\\\\=\large \boxed{\sf \bf \dfrac{\pi}{4}}[/tex]
Thank you
Answer: [tex]\bold{\dfrac{\pi}{4}}[/tex]
Step-by-step explanation:
Note the following integral formula: [tex]\int\limits^a_b {\dfrac{1}{\sqrt{1-x^2}}} \, dx =\sin^{-1}(x)\bigg|^a_b[/tex]
We can rationalize the denominator to get: [tex]\dfrac{1}{\sqrt2}\bigg(\dfrac{\sqrt2}{\sqrt2}\bigg)=\dfrac{\sqrt2}{2}[/tex]
*************************************************************************************
[tex]\int\limits^{\frac{\sqrt2}{2}}_0 {\dfrac{1}{\sqrt{1-x^2}}} \, dx \\\\\\=\sin^{-1}(x)\bigg|^{\frac{\sqrt2}{2}}_0\\\\\\= \sin^{-1}\bigg(\dfrac{\sqrt2}{2}\bigg)-\sin^{-1}(0)\\\\\\=\dfrac{\pi}{4}-0\pi\\\\\\=\large\boxed{\dfrac{\pi}{4}}[/tex]
