Respuesta :

Answer:

[tex] \boxed{ \boxed{ \bold{ \sf{51.68 \: , \: 48.34 \:, \: 80.02}}}}[/tex]

Step-by-step explanation:

Let's solve:

As we know that the sum of angles of traingle adds to 180°

[tex] \sf{2y - 5 + y + 20 + 3y - 5 = 180}[/tex]

Collect like terms

⇒[tex] \sf{6y - 5 + 20 - 5 = 180}[/tex]

⇒[tex] \sf{6y + 15 - 5 = 180}[/tex]

⇒[tex] \sf{6y + 10 = 180}[/tex]

Move constant to right hand side and change it's sign

⇒[tex] \sf{6y = 180 - 10}[/tex]

Calculate the difference

⇒[tex] \sf{6y = 170}[/tex]

Divide both sides of the equation by 6

⇒[tex] \sf{ \frac{6y}{6} = \frac{170}{6} }[/tex]

Calculate

⇒[tex] \sf{y = 28.34}[/tex]

Now, let's replace the value:

⇒[tex] \sf{2y - 5 = 2 \times 28.34 - 5 = 51.68}[/tex]

⇒[tex] \sf{y + 20 = 28.34 + 20 = 48.34}[/tex]

⇒[tex] \sf{3y - 5 = 3 \times 28.34 - 5 = 80.02}[/tex]

Hope I helped!

Best regards!!

Answer:

51 2/3 , 48 1/3 and 80 degrees.

Step-by-step explanation:

The 3 angles add up to 180 degrees.

2y - 5 + y + 20 + 3y - 5 = 180

6y + 10 = 180

6y = 180 - 10

6y = 170

y = 170 / 6 = 28 1/3 degrees.

So the 3 angles are  2(28 1/3) - 5,   28 1/3 + 20 and 3(28 1/3) - 5.