Respuesta :
Answer:
[tex] \boxed{ \boxed{ \bold{ \sf{51.68 \: , \: 48.34 \:, \: 80.02}}}}[/tex]
Step-by-step explanation:
Let's solve:
As we know that the sum of angles of traingle adds to 180°
[tex] \sf{2y - 5 + y + 20 + 3y - 5 = 180}[/tex]
Collect like terms
⇒[tex] \sf{6y - 5 + 20 - 5 = 180}[/tex]
⇒[tex] \sf{6y + 15 - 5 = 180}[/tex]
⇒[tex] \sf{6y + 10 = 180}[/tex]
Move constant to right hand side and change it's sign
⇒[tex] \sf{6y = 180 - 10}[/tex]
Calculate the difference
⇒[tex] \sf{6y = 170}[/tex]
Divide both sides of the equation by 6
⇒[tex] \sf{ \frac{6y}{6} = \frac{170}{6} }[/tex]
Calculate
⇒[tex] \sf{y = 28.34}[/tex]
Now, let's replace the value:
⇒[tex] \sf{2y - 5 = 2 \times 28.34 - 5 = 51.68}[/tex]
⇒[tex] \sf{y + 20 = 28.34 + 20 = 48.34}[/tex]
⇒[tex] \sf{3y - 5 = 3 \times 28.34 - 5 = 80.02}[/tex]
Hope I helped!
Best regards!!
Answer:
51 2/3 , 48 1/3 and 80 degrees.
Step-by-step explanation:
The 3 angles add up to 180 degrees.
2y - 5 + y + 20 + 3y - 5 = 180
6y + 10 = 180
6y = 180 - 10
6y = 170
y = 170 / 6 = 28 1/3 degrees.
So the 3 angles are 2(28 1/3) - 5, 28 1/3 + 20 and 3(28 1/3) - 5.