Respuesta :
Answer:
[tex] \boxed{ \boxed{ \bold{ {x}^{2} + 4x - 21}}}[/tex]
Step-by-step explanation:
[tex] \sf{(x - 3)(x + 7)}[/tex]
Use the distributive property to multiply each term of the first binomial by each term of the second binomial.
⇒[tex] \sf{x(x + 7) - 3(x + 7)}[/tex]
⇒[tex] \sf{ {x}^{2} + 7x - 3x - 21}[/tex]
Collect like terms
⇒[tex] \sf{ {x}^{2} + 4x - 21}[/tex]
Hope I helped!
Best regards!!
Answer:
[tex] \boxed{\boxed{\boxed{\red{{x}^{2} + 4x - 21}}}}[/tex]
Step-by-step explanation:
[tex](x - 3)(x + 7) \\ x(x + 7) - 3(x + 7) \\ {x}^{2} + 7x - 3x - 21 \\ {x}^{2} + 4x - 21[/tex]