Respuesta :

Answer:

[tex] \boxed{ \boxed{ \bold{ {x}^{2} + 4x - 21}}}[/tex]

Step-by-step explanation:

[tex] \sf{(x - 3)(x + 7)}[/tex]

Use the distributive property to multiply each term of the first binomial by each term of the second binomial.

⇒[tex] \sf{x(x + 7) - 3(x + 7)}[/tex]

⇒[tex] \sf{ {x}^{2} + 7x - 3x - 21}[/tex]

Collect like terms

⇒[tex] \sf{ {x}^{2} + 4x - 21}[/tex]

Hope I helped!

Best regards!!

Hi1315

Answer:

[tex] \boxed{\boxed{\boxed{\red{{x}^{2} + 4x - 21}}}}[/tex]

Step-by-step explanation:

[tex](x - 3)(x + 7) \\ x(x + 7) - 3(x + 7) \\ {x}^{2} + 7x - 3x - 21 \\ {x}^{2} + 4x - 21[/tex]