Hot coffee is contained in a cylindrical thermos bottle that is of length L-0.3m and is lying on its side (horizontally). The coffee container consists of a glass flask of diameter DI-7 cm sperated from an aluminum housing of diameter D2-0.08 m by air at atmospheric pressure. If the inner and outer temperatures are 75oC and 35 oC respectively, what is the heat loss from the coffee due to convection?

Respuesta :

Note: The diagram attached below is the completion of the given question.

Also calculate the heat loss from the coffee due to radiation and the total heat loss

Answer:

[tex]Q_{conv} = 16.04 W\\Q_{rad} = 3.20 W\\H_{loss} = 19.24 W[/tex]

Explanation:

Glass diameter of the coffee container, [tex]D_1 = 7 cm = 0.07 m[/tex]

Glass radius of the coffee container, r₁ = 0.07/2 = 0.035 m

Diameter of the aluminium housing, [tex]D_2 = 0.08 m[/tex]

Radius of the aluminium housing, r₂ = 0.08/2 = 0.04 m

Inner temperature, T₁ = 75°C = 348 K

Outer temperature, T₂ = 35°C = 308 K

[tex]\epsilon_1 = 0.25\\\epsilon_2 = 0.25[/tex]

[tex]T_f = \frac{T_1 + T_2}{2} \\T_f = \frac{348+308}{2} \\T_f = 328 K[/tex]

At [tex]T_f = 328 K[/tex], P = 1 atm

k = 0.0284 w/m-k,  v = 23.74 * 10⁻⁶,  [tex]\alpha = 26.6 * 10^{-6}[/tex], pr = 0.703, [tex]\beta = 3.05 * 10^{-3} K^{-1}[/tex]

[tex]H_{loss} = Q_{rad} + Q_{conv}[/tex]

[tex]Q_{conv} = \frac{2 \pi k L (T_1 - T_2)}{ln(\frac{r_2}{r_1} )} \\\\Q_{conv} = \frac{2 \pi* 0.0284 * 0.3 (75 - 35)}{ln(\frac{0.04}{0.035} )} \\Q_{conv} = 16.04 W[/tex]

[tex]Q_{rad} = \frac{\sigma (\pi D_1 L) (T_1^4 - T_2^4)}{\frac{1}{\epsilon_1 } + \frac{1 - \epsilon_2}{\epsilon_2} (\frac{\gamma_1}{\gamma_2}) }[/tex]

[tex]Q_{rad} = \frac{5.67*10^{-8}(\pi * 0.07*0.3) (348^4 - 308^4)}{\frac{1}{0.25 } + \frac{1 - 0.25}{0.25} (\frac{0.035}{0.04}) } \\\\Q_{rad} = 3.20 W[/tex]

[tex]H_{loss} = 3.20 + 16.04\\H_{loss} = 19.24 W[/tex]

Ver imagen kollybaba55