Answer:
1) v_orbit = 3.49*10^4 m/s
2) F = 5.51*10^22 N
Explanation:
1) In order to calculate the speed of Venus in its orbit, you use the following formula:
[tex]v_{orbit}=\sqrt{\frac{GM_s}{R}}[/tex] (1)
v_orbit: speed of Venus = ?
G: Cavendish's constant = 6.674*10^-11.m^3kg^-1s^-2
Ms: mass of the sun = 1.98*10^30 kg
R: distance between the center of Sun and the center of Venus = 1.08*10^11m
You replace the values of the parameters in the equation (1):
[tex]v_{orbit}=\sqrt{\frac{(6.674*10^{-11}m^3kg^{-1}s^{-2})(1.98*10^{30})}{1.08*10^{11}m}}\\\\v_{orbit}=3.49*10^4\frac{m}{s}[/tex]
The speed of Venus in its orbit around the Sun is 3.49*10^4 m/s
2) The force is given by the following formula:
[tex]F=G\frac{M_vM_s}{R^2}[/tex]
Ms: mass of Venus = 4.87*10^24 kg
[tex]F=(6.674*10^{-11}m^3kg^{-1}s-2})\frac{(4.87*10^{24}kg)(1.98*10^{30}kg)}{(1.08*10^{11}m)^2}\\\\F=5.51*10^{22}N[/tex]
The Sun exertes on Venus a force of 5.51*10^22 N