Respuesta :
Answer:
[tex]x = 500[/tex]
Step-by-step explanation:
Given
[tex]log20x^3 - 2logx = 4[/tex]
Required
Solve for x
[tex]log20x^3 - 2logx = 4[/tex]
Using law of logarithm which says;
[tex]nlogx = logx^n[/tex]
The expression becomes
[tex]log20x^3 - logx^2 = 4[/tex]
Also, using laws of logarithm which says:
[tex]loga - logb = log\frac{a}{b}[/tex]
The expression becomes
[tex]log(\frac{20x^3}{x^2}) = 4[/tex]
[tex]log(20x) = 4[/tex]
Also, using laws of logarithm which says
[tex]If\ loga = b\\then\ a = 10^b[/tex]
The expression becomes
[tex]20x = 10^4[/tex]
[tex]20x = 10000[/tex]
Divide through by 20
[tex]\frac{20x}{20} = \frac{10000}{20}[/tex]
[tex]x = \frac{10000}{20}[/tex]
[tex]x = 500[/tex]