Respuesta :

Answer:

[tex]x = 500[/tex]

Step-by-step explanation:

Given

[tex]log20x^3 - 2logx = 4[/tex]

Required

Solve for x

[tex]log20x^3 - 2logx = 4[/tex]

Using law of logarithm which says;

[tex]nlogx = logx^n[/tex]

The expression becomes

[tex]log20x^3 - logx^2 = 4[/tex]

Also, using laws of logarithm which says:

[tex]loga - logb = log\frac{a}{b}[/tex]

The expression becomes

[tex]log(\frac{20x^3}{x^2}) = 4[/tex]

[tex]log(20x) = 4[/tex]

Also, using laws of logarithm which says

[tex]If\ loga = b\\then\ a = 10^b[/tex]

The expression becomes

[tex]20x = 10^4[/tex]

[tex]20x = 10000[/tex]

Divide through by 20

[tex]\frac{20x}{20} = \frac{10000}{20}[/tex]

[tex]x = \frac{10000}{20}[/tex]

[tex]x = 500[/tex]

Answer:

500

Step-by-step explanation: