Bruno solved the following equation: 4x + one half(10x − 4) = 6 Step Work Justification 1 4x + 5x − 2 = 6 2 9x − 2 = 6 3 9x = 8 4 x = eight ninths Which of the following has all the correct justifications Bruno used to solve this equation? 1. Multiplication Property of Equality 2. Combine like terms 3. Subtraction Property of Equality 4. Division Property of Equality 1. Distributive Property 2. Combine like terms 3. Subtraction Property of Equality 4. Division Property of Equality 1. Distributive Property 2. Combine like terms 3. Addition Property of Equality 4. Division Property of Equality 1. Multiplication Property of Equality 2. Combine like terms 3. Addition Property of Equality 4. Division Property of Equality

Respuesta :

Answer:

Statement                                   Reason

1. [tex]4x+5x-2=6[/tex]                 1. Distributive Property

2. [tex]9x-2=6[/tex]                        2. Combine like terms

3. [tex]9x=8[/tex]                              3. Addition Property of Equality

4. [tex]x=\dfrac{8}{9}[/tex]                               4. Division Property of Equality

Step-by-step explanation:

The given equation is

[tex]4x+\dfrac{1}{2}(10x-4)=6[/tex]

Using distributive property, we get

[tex]4x+\dfrac{1}{2}(10x)+\dfrac{1}{2}(-4)=6[/tex]

[tex]4x+5x-2=6[/tex]

[tex]9x-2=6[/tex]         (Combine like terms)

Using Addition Property of Equality, add 2 on both sides.

[tex]9x=6+2[/tex]

[tex]9x=8[/tex]

Using Division Property of Equality, divide both sides by 9.

[tex]x=\dfrac{8}{9}[/tex]