Respuesta :

The particular identity you want to use is

[tex]\cos^2x=\dfrac{1+\cos(2x)}2[/tex]

Then

[tex]3\cos^4x=3(\cos^2x)^2=3\left(\dfrac{1+\cos(2x)}2\right)^2=\dfrac34(1+\cos(2x))^2[/tex]

Expand the binomial to get

[tex]3\cos^4x=\dfrac34\left(1+2\cos(2x)+\cos^2(2x)\right)[/tex]

Use the identity again to write

[tex]\cos^2(2x)=\dfrac{1+\cos(4x)}2[/tex]

and so

[tex]3\cos^4x=\dfrac34\left(1+2\cos(2x)+\dfrac{1+\cos(4x)}2\right)[/tex]

[tex]3\cos^4x=\dfrac38\left(3+4\cos(2x)+\cos(4x)\right)[/tex]